

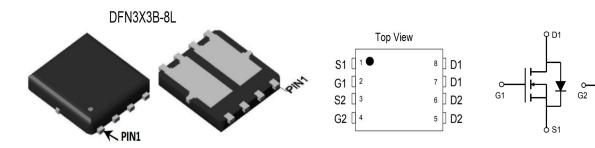
Dual -20V(D-S) P MOSFET

FEATURES

For Single Dice

 $RDS(ON) \leq 11 m\Omega @VGS = -4.5V$

RDS(ON) \leq 15m Ω @VGS=-2.5V


 $RDS(ON) \le 20m\Omega@VGS=-1.8V$

high density cell design for extremely low RDS(ON)

GENERAL DESCRIPTION

The FS4479 combines advanced trench MOSFET technology with a low resistance package to provide extremely low $R_{DS(ON)}$. This device is ideal for load switch and battery protection applications.

PIN CONFIGURATION

Absolute Maximum Ratings (TA=25°C Unless Otherwise Noted for each single dice)

Absolute Maximum Ratings TA=25°C unless otherwise noted						
Parameter		Symbol	Maximum	Units		
Drain-Source Voltage Gate-Source Voltage		VDS	-20	V		
		VGS	±8			
Continuous Drain Current G	TC=25°C	15	-40			
	TC=100°C	ID	-29	A		
Pulsed Drain Current C		IDM	-100			
Continuous Drain	TA=25°C	IDOM	-14.5			
Current	TA=70°C	IDSM	-11.5	A		
Avalanche Current C		IAS, IAR	-40	A		
Avalanche energy L=0.1mH C		EAS, EAR	80	mJ		
Power Dissipation B	TC=25°C	DD	29	10/		
	TC=100°C	PD PD	12	W		
Power Dissipation A	TA=25°C	DDCM	3.1	147		
	TA=70°C	PDSM PDSM	2	W		
Junction and Storage Temperature Range		TJ, TSTG	-55 to 150	°C		

^{*} The device mounted on 1in₂ FR4 board with 2 oz copper

FS4479

● Electrical Characteristics (T_J=25°C unless otherwise noted for each single dice)

Parameter	Symbol	Condition		Тур	Max	Unit				
Off Characteristics										
Drain-Source Breakdown Voltage	BV _{DSS}	V _G s=0V I _D =-250μA -20		-	-	V				
Zero Gate Voltage Drain Current	Ipss	Vps=-20V,Vgs=0V -		-	1	μΑ				
Gate-Body Leakage Current	lgss	V _G s=±8V,V _D s=0V		-	±100	nA				
On Characteristics(Note 3)										
Gate Threshold Voltage	V _{GS(th)}	Vps=Vgs,lp=-250μA -0.3		-0.55	-0.9	V				
Drain-Source On-State Resistance	Rds(on)	Vgs=-4.5V, Ip=-16A - Vgs=-2.5V, Ip=-16A Vgs=-1.8V, Ip=-5A		9.5 13.4 17.5	11 15 20	mΩ				
Forward Transconductance	g FS	V _{DS} =-10V,I _D =-15A -		20	-	S				
Dynamic Characteristics(Note4)	<u> </u>									
Input Capacitance	Clss		-	3250	-	PF				
Output Capacitance	Coss	V _{DS} =-15V,V _{GS} =0V, F=1.0MHz	-	605	-	PF				
Reverse Transfer Capacitance	Crss		-	565	-	PF				
Switching Characteristics(Note 4)										
Turn-on Delay Time	t d(on)		-	13	-	nS				
Turn-on Rise Time	tr	VDD=-15V,ID=-10A	-	12	-	nS				
Turn-Off Delay Time	td(off)	V_{GS} =-8 V , R_{GEN} =6 Ω	-	50	-	nS				
Turn-Off Fall Time	tf		-	14	-	nS				
Total Gate Charge	Qg	V 451/1 40A	-	84	-	nC				
Gate-Source Charge	Qgs	V _{DS} =-15V,I _D =-10A, V _{GS} =-8V	-	11.7	-	nC				
Gate-Drain Charge	Q_{gd}	V G50 V	-	25	-	nC				
Drain-Source Diode Characteris	tics									
Diode Forward Voltage(Note 3)	VsD	V _G s=0V,I _S =-10A	-	-0.85	-1.2	V				
Diode Forward Current(Note 2)	ls		-	-	-50	Α				
Reverse Recovery Time	trr	TJ = 25°C, IF = -10A	-	-	45	nS				
Reverse Recovery Charge	Qrr	di/dt = 100A/µs(Note3)	-	-	43	nC				
Forward Turn-On Time	ton	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)								

- A. The value of RqJA is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with TA =25°C. The Power dissipation PDSM is based on R qJA t ≤ 10s value and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design.
- B. The power dissipation PD is based on TJ(MAX)=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.
- C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=150°C. Ratings are based on low frequency and duty cycles to keep initial TJ=25°C.
- D. The RqJA is the sum of the thermal impedance from junction to case RqJC and case to ambient.
- E. The static characteristics in Figures 1 to 6 are obtained using <300ms pulses, duty cycle 0.5% max.
- F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of TJ(MAX)=150°C. The SOA curve provides a single pulse ratin g.
- G. The maximum current rating is package limited.
- H. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with TA=25°C.

FS –V1.0 www.forsemi.com

FS4479

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

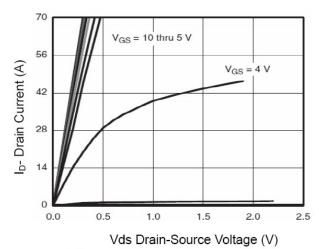


Figure 1 Output Characteristics

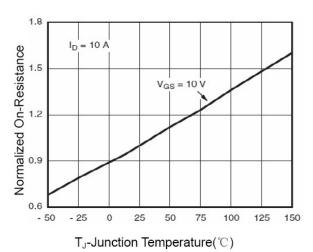
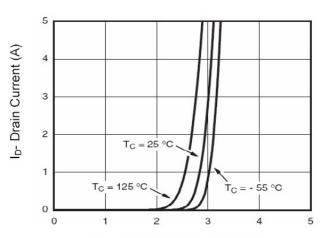
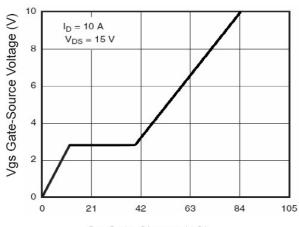




Figure 4 Rdson-Junction Temperature

Vgs Gate-Source Voltage (V)

Qg Gate Charge (nC)

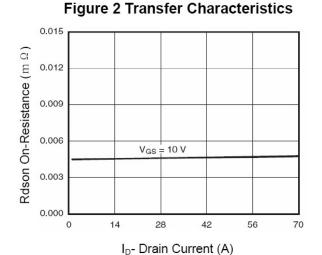
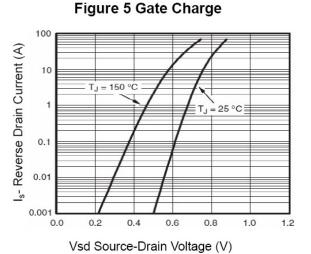
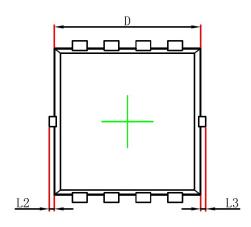
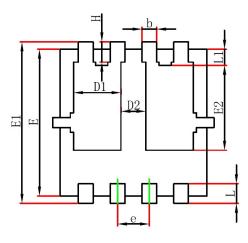


Figure 3 Rdson- Drain Current

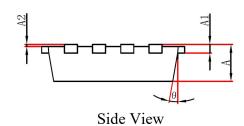



Figure 6 Source- Drain Diode Forward

3/4



FS4479


● PACKAGE DFN3×3B-8L

Top View

Bottom View

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min.	Max.	Min.	Max.	
Α	0.650	0.850	0.026	0.033	
A1	0.152 REF.		0.006 REF.		
A2	0~0.05		0~0.002		
D	2.900	3.100	0.114	0.122	
D1	0.935	1.135	0.037	0.045	
D2	0.280	0.480	0.011	0.019	
E	2.900	3.100	0.114	0.122	
E1	3.150	3.450	0.124	0.136	
E2	1.535	1.935	0.060	0.076	
b	0.200	0.400	0.008	0.016	
е	0.550	0.750	0.022	0.030	
L	0.300	0.500	0.012	0.020	
L1	0.180	0.480	0.007	0.019	
L2	0~0.100		0~0.004		
L3	0~0.100		0~0.004		
Н	0.315	0.515	0.012	0.020	
θ	9°	13°	9°	13°	