

4MHz 6A Synchronous Step Down Converter

Features

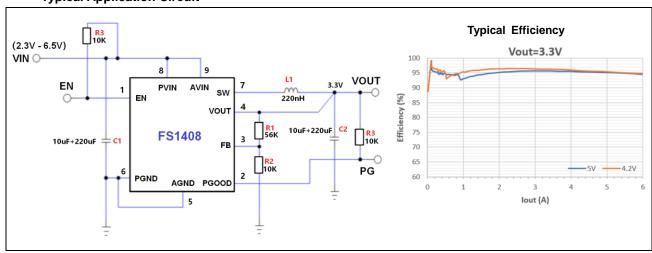
- · 6A Output Current
- · 4MHz Switching Frequency
- · PFM Light Load Operation
- · 25uA Quiescent Current
- 98% Peak Efficiency
- · 2.3V to 6.5V Input Voltage Range
- · 0.5V to 4V Adjustable Output Voltage
- · Fast Load Transient Response
- · 100% Duty Cycle
- · Logic Enable Input
- Soft-Start
- · Input Under-Voltage Lockout
- Over Current Protection
- · Thermal Shutdown
- · Active Output Discharge
- · EU RoHS Compliant, Pb Free

General Description

Applications

- · Optical modules
- · Cellular Phones
- Tablets
- · Wireless Data Cards
- Embedded Power supply
- · Wearables and IoT
- · Security and Surveillance

Package


DFN3X2

FS1408 is very efficient, high-frequency DC-DC voltage regulator. Operating with a switching frequency of 4MHz, it allows the use of small external components in both value and footprint. The output voltage is adjustable from 0.5V to 4.0V, delivered from an input voltage supply of 2.3V to 6.5V.

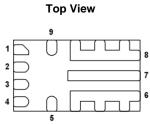
A low quiescent current of only 25uA enables high efficiency even with very light load. At light current load, the regulator automatically enters Pulse Frequency Modulation (PFM) operation mode for best possible efficiency over the entire range of load currents. The uPoL comes in a compact 9-pin DFN package with 0.5mm pin pitch and a 3mm x 2mm x 0.75mm size.

Typical Application Circuit

FS1408

• Absolute Maximum Ratings (Operation of the device outside of these parameters may cause permanent damage.)

-
Units
V
V
V
V
°C
°C
V
V


Operating Conditions

Parameter	Symbol	Min	Тур	Max	Units
Supply Voltage	V _{IN}	2.3		6.5	V
Output Current	I _{OUT}	0		6	Α
Output Inductor	L	100	220		nH
Input Capacitor	C _{IN}	47	220		μF
Output Capacitor	Соит	47	220		μF
Operating Temperature, Junction	T _{OJ}	-40		+125	°C

Junction to ambient thermal resistance is a function of board layout and ambient air flow condition. This data is based on four layers PCB (30mm x 30mm; 70µm Cu top signal layer) in still air box in accordance with JEDEC standard JESD51 on natural convection.

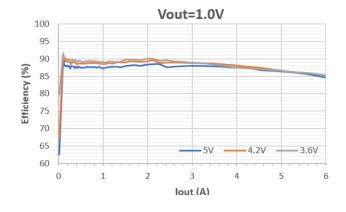
Parameter	Symbol	Тур	Units
Junction-to-Ambient Thermal Resistance	θ_{JA}	30.45	°C/W
Junction-to-Case Thermal Resistance	θ_{JC}	16.68	°C/W

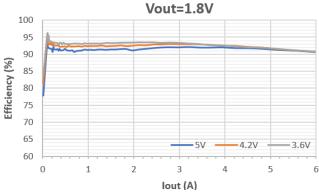
PIN Configuration and Description

"	id Description					
	Pin	Name	Description			
	1	EN	Enable. Part is active when VEN > 1.2V. Part is disabled when VEN < 0.5V.			
	2	PG	Power Good. Connect to VOUT thru resistor.			
	3	FB	Feedback. Connect to the mid-point of external resistor divider to set the			
3	3	ГВ	desired Vout.			
,	4	VOUT	Output voltage sensing pin.			
6	5	AGND	Analog Ground.			
	6 PGND Power Ground. Low-side switch source terminal.		Power Ground. Low-side switch source terminal.			
	7	SW	Switching node. Connect to the output inductor.			
	8	PVIN	Power supply input. Connect to power source with a minimum 10uF ceramic			
			capacitor.			
	9	AVIN	Power supply for Control section. Connect to PVIN.			

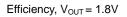
FS –V1.0 www.forsemi.com

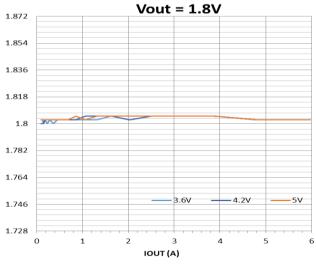
Electrical Specifications

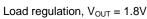

Maximum and minimum values are: V_{IN} = EN = 2.3V to 6.5V, T_J = -40 to +125°C Typical values unless otherwise noted: V_{IN} = 3.6V, V_{OUT} = 1.8V, Temp = +25°C

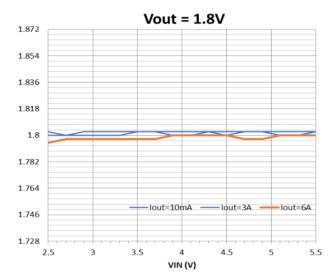

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
DC Characteristics						
Supply Voltage	V _{IN}		2.3		6.5	V
Quiescent Current	1	PFM Mode		1		mA
Quiescent Current	lα	No Load, Not Switching		25		μA
Shutdown Current	I _{SHDN}	EN = GND		0.1	1	μA
Under-Voltage Lockout Threshold	V _{UVLO}	Rising V _{IN}		2.1	2.2	V
Under-Voltage Lockout Hysteresis	V _{UVLOHYST}			200		mV
Thermal Shutdown	T _{TSD}			155		°C
Thermal Shutdown Hysteresis	T _{HYST}			30		°C
Output Characteristics						
Switching Frequency	F _{SW}			4		MHz
Feedback Voltage	V_{FB}		-1%	0.5	+1%	V
Soft-Start Time	T _{SS}			3		ms
Enable Turn-on Delay	T _{EN}			100		μs
PMOS On Resistance	R _{DSONP}	$V_{IN} = V_{GS} = 3.6V$		12		mΩ
NMOS On Resistance	R _{DSONN}	$V_{IN} = V_{GS} = 3.6V$		7.5		mΩ
PMOS Peak Current Limit	I _{LIM}	V _{IN} = 3.6V, Open Loop		9		Α
Output Discharge Resistance	R _{DIS}	EN = 0V		17		Ω
Power Good Threshold VOUT Rising	V_{PGR}			96%		
Power Good Threshold VOUT Falling	V_{PGF}			92%		
Power Good Low Voltage	V_{PGL}				100	mV
Power Good Leakage Current	I _{PG}				1	μA
Logic input: EN						
Logic High Voltage	V _{IH}		1.2			V
Logic Low Voltage	V _{IL}				0.5	V
Logic Pin Leakage Current	I _{LPIN}				1	μA
Logic Input Hysteresis	V _{LHYST}			200		mV

Typical Application Circuit unless otherwise noted.

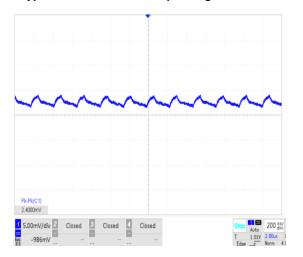


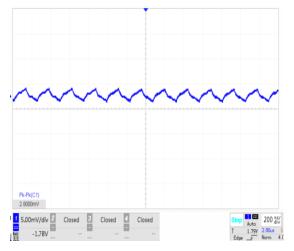

Typical test conditions unless otherwise noted: VIN = 3.6V, VOUT = 1.8V, Temp = +25°C.



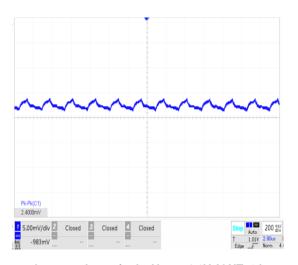


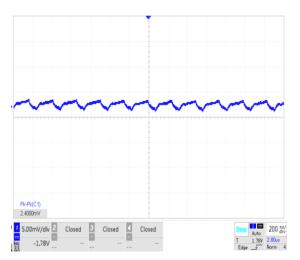
Efficiency, $V_{OUT} = 1.0V$



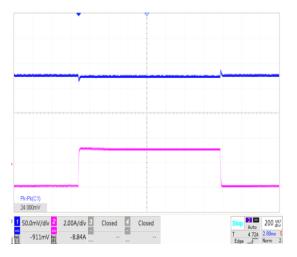


Line regulation, $V_{OUT} = 1.8V$

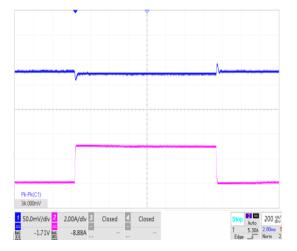



Output voltage ripple, V_{OUT} = 1.0V, IOUT=3A

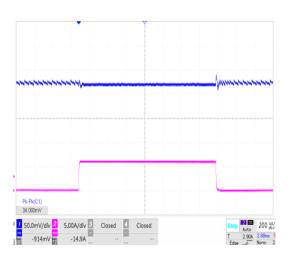
Output voltage ripple, $V_{OUT} = 1.8V$, IOUT=3A

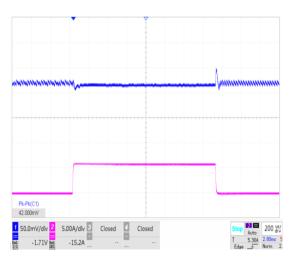


Output voltage ripple, V_{OUT} = 1.0V, IOUT=6A

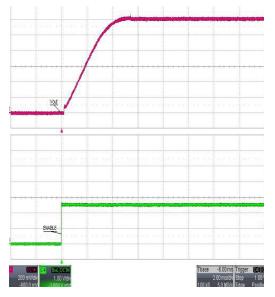


Output voltage ripple, $V_{OUT} = 1.8V$, IOUT=6A

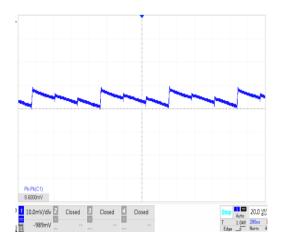



Transient Response, $V_{OUT} = 1V$, $I_{LOAD} = 3A$ to 6A Step

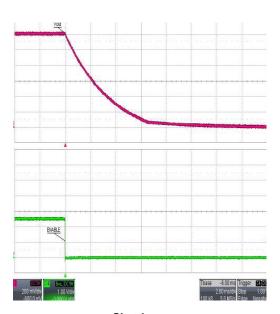
Transient Response, V_{OUT} = 1.8V, I_{LOAD} = 3A to 6A Step

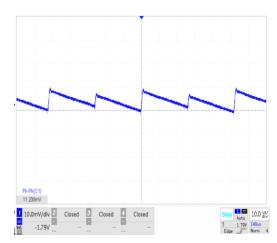


Transient Response, $V_{OUT} = 1V$, $I_{LOAD} = 0A$ to 6A Step

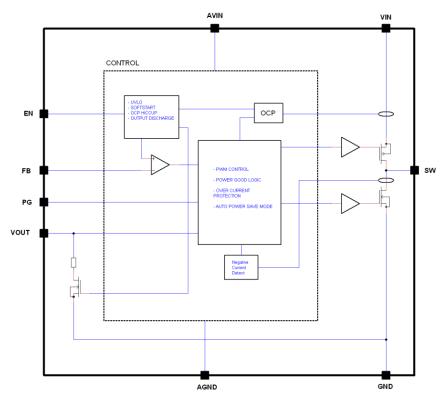


Transient Response, V_{OUT} = 1.8V, I_{LOAD} = 0A to 6A Step




Start-Up

Output voltage ripple, $V_{OUT} = 1.0V$, $I_{OUT}=0A$


Shutdown

Output voltage ripple, V_{OUT} = 1.8V, I_{OUT}=0A

Functional Description

FS1408 Block Diagram

The FS1408 is a synchronous DC/DC voltage regulator available with typical switching frequency of 4MHz. Operating from an input voltage between 2.3V and 6.5V, the regulator can deliver up to 6A of load current.

Enable

Setting the EN pin to logic High enables the device. Alternatively, the device is disabled when the EN voltage is set to logic Low. In this state the IC draws less than 1µA of current and the output is pulled to ground through a resistive load. V_{OUT} starts to ramp up after 100µs delay.

Soft-Start

When the device is enabled, internal soft-start circuitry causes V_{OUT} to ramp up over a period of 3mS to limit inrush current. This feature protects a high impedance source from being pulled to a lower voltage as the device turns on.

Under voltage Lockout (UVLO)

The under-voltage lockout feature prevents the device from turning on if V_{IN} is below the UVLO level of 2.1V. If the device is enabled under UVLO conditions, the circuitry will not turn on until the input voltage is increased. Once active, the UVLO circuit has 200mV of hysteresis and the device will turn off if V_{IN} drops below 1.9V.

Active Output Discharge

When the device is disabled through the EN pin, a discharge path for the output capacitor is created between V_{OUT} and ground through a 17 Ohm resistor (R_{DIS}).

8/10

Modes of Operation

The converter automatically switches to pulse frequency modulation (PFM) operation at light current loads. In PFM mode the frequency of pulses is varied to deliver the best possible efficiency. The device switches between PFM and PWM as the load current changes and thus optimizes performance.

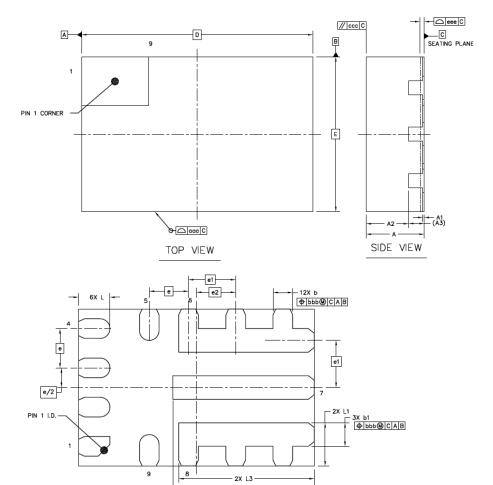
If the input voltage ever gets too close to the target output voltage, such that regulation can no longer be maintained, the regulator will enter 100% duty cycle mode. In this mode the high side switch is ON, connecting the input and output together to deliver a voltage as close to the target as possible.

Thermal Shutdown

The device thermal shutdown protection is enabled if the chip temperature exceeds 155°C. Once the temperature drops below 125°C, the device will be re-enabled, and a new soft-start cycle will begin.

Overcurrent Protection

The device has overcurrent protection to prevent damage to the device and inductor during overcurrent conditions. Peak current protection occurs at 9A. After hitting 16 consecutive cycles of peak current limit, the output will be disabled. After being disabled for 1.5ms, the device will be re-enabled, and a new soft-start cycle will begin.


Power Good Indicator

The PG pin is an open-drain output and pulls the PG pin low when the FB voltage is less than 92% of the nominal internal reference voltage and resumes when FB voltages is greater than 96% of the nominal internal reference voltage.

FS –V1.0 www.forsemi.com

Package Dimensions

BOTTOM VIEW

Cumahal	Dimensions in mm			
Symbol	Min Nom		Max	
Α	0.7	0.75	0.8	
A1	0	0.02	0.05	
A2	ı	-		
А3	0.203 REF			
b	0.2	0.25	0.3	
b1	0.25	0.3	0.35	
D	3 BSC			
E	2 BSC			
е	0.5 BSC			
e1	0.6 BSC			
e2	0.5 BSC			

Min Nom Max L 0.3 0.4 0.5 L1 0.5 0.55 0.6 L2 1.75 1.8 1.85 L3 1.675 1.725 1.775 aaa 0.1 0.1 0.1 eee 0.05 0.05	Symbol	Dimensions in mm				
L1 0.5 0.55 0.6 L2 1.75 1.8 1.85 L3 1.675 1.725 1.775 aaa 0.1 0.1 ccc 0.1 0.05	Syllibol	Min Nom		Max		
L2 1.75 1.8 1.85 L3 1.675 1.725 1.775 aaa 0.1 ccc 0.1 eee 0.05	L	0.3	0.4	0.5		
L3 1.675 1.725 1.775 aaa 0.1 ccc 0.1 eee 0.05	L1	0.5	0.55	0.6		
aaa 0.1 ccc 0.1 eee 0.05	L2	1.75	1.8	1.85		
ccc 0.1 eee 0.05	L3	1.675	1.725	1.775		
eee 0.05	aaa		0.1			
	ссс		0.1			
	eee		0.05			
bbb 0.1	bbb		0.1			

FS –V1.0 www.forsemi.com