

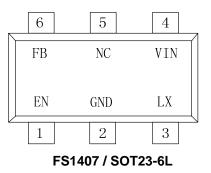
1.5MHz 2A Output Synchronous Step Down Converter

Features

- Soft Start
- Internal Current Limit
- High Efficiency Up to 96%
- Very Low Quiescent Current of 40uA
- 2A Output Current
- 1.5MHz Constant Frequency Operation
- Internal Synchronous Rectifier Eliminates Schottky Diode
- Adjustable Output Voltages From 0.6V to $V_{\mbox{\scriptsize IN}}$
- Fixed Output Voltage Options Available
- 100% Duty Cycle Low-Dropout Operation
- 0.1uA Shutdown Current
- Tiny SOT23-6L Package

General Description

Applications


•Cellular and Smart Phones

- PDAs
- Mobile Phones
- Wireless and DSL Modems
- Digital Cameras
- Portable Instruments
- PC Cards

The FS1407 is a fixed-frequency current-modes Synchronous PWM step down converter that is capable of delivering 2A of output current while achieving peak efficiency of 96%. Under light load conditions, the FS1407 operates in a proprietary pulse skipping mode that consumes just 40uA of supply current, maximizing battery life in portable applications. The FS1407 operates with a fixed frequency of 1.5MHz, minimizing noise in noise-sensitive applications and allowing the use of small external components. The FS1407 is an ideal solution for applications powered by Li-lon batteries or other portable applications that require small board space.

The FS1407 is available in an adjustable output voltage version capable of generating output voltage version from 0.6V to V_{IN} . The FS1407 is available in the tiny 6-pin SOT23-6L package.

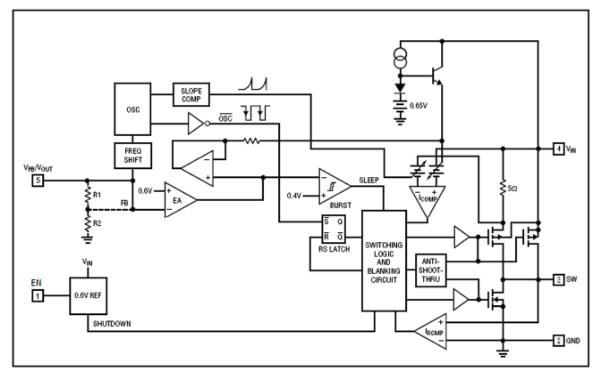
• Pin Configurations

www.forsemi.com

Absolute Maximum Ratings

Parameter	Symbol	Ratings	Unit	
IN Pin Voltage	V _{IN}	-0.3 to 6.5V	V	
FB Pin Voltage	V _{FB}	-0.3 to V _{IN} + 0.3	V	
EN Pin Voltage	V _{EN}	-0.3 to V _{IN} + 0.3	V	
SW Pin Voltage	V _{sw}	-0.3 to V _{IN} + 0.3	V	
Continuous SW Current	I _{sw}	Internally limited	А	
Maximum Power Dissipation (derate 5.3mW/ $^{\circ}\mathrm{C}$ above $T_{A}\text{=}50^{\circ}\mathrm{C}$)	PD	530	mW	
Operating Junction Temperature	T _{opr}	-40 to + 150		
Storage Temperature Range	T _{stg}	-55 to + 150	°C	
Lead Temperature (Soldering, 10 seconds)	T _{solder}	300		

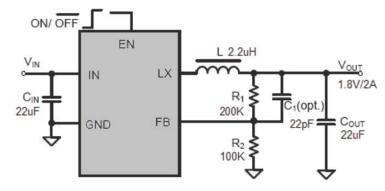
• Electrical Characteristics


($V_{IN}=V_{EN}=3.6V$, $T_A=25^{\circ}C$ $C_{in}=4.7Uf$ $C_{out}=10uF$ all capacitors are ceramic, unless otherwise specified.)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Input Voltage Range	V _{IN}		2.3		6	V
Under Voltage Lockout Threshold	V _{UVLO}	V _{IN} rising, hysteresis =0.1V	1.7	1.9	2.1	V
Operating Supply Current (PWM Mode)		V _{FB} =60%,I _{OUT} =0		150	300	uA
Standby Supply Current (PFM Mode)		V _{FB} =105%,I _{OUT} =0		40	75	uA
Shutdown Supply Current		V _{EN} =0V,V _{IN} =4.2V		0.1	1	uA
		T _A =25℃	0.588	0.6	0.612	V
Adjustable Version Regulation Voltage	V _{FB}	0℃ <t<sub>A<85℃</t<sub>	0.586	0.6	0.613	V
		T _A <-40℃; T _A >85℃	0.585	0.6	0.615	V
Output Voltage Line Regulation		V_{IN} =2.5V to 5.5V	-	0.1		%/V
Output Voltage Load Regulation		I _{out} =10mA to 1500mA		0.2		%/A
Inductor Current Limit	I _{LIM}	$V_{\text{IN}}\text{=}3.0V, V_{\text{FB}}\text{=}90\%$ of $V_{\text{out(NOM)}}$		4		А
Oscillator Frequency	f _{SW}	V_{FB} or V_{OUT} in regulation		1.5		MHz
PMOS On Resistance	R _{ONP}	I _{SW} =-100mA		0.1		Ω
NMOS On Resistance	R _{ONN}	I _{sw} =100mA		0.09		Ω
SW Leakage Current		EN=GND,V _{IN} =5.5V V _{SW} =5.5V			1	uA
EN Logic High Threshold	V _{IH}	V _{IN} =2.7V to 5.5V	1.4			V
EN Logic Low Threshold	V _{IL}	V _{IN} =2.7V to 5.5V			03	V
EN Input Bias Current	I _{EN}	V _{IN} =5.5V,EN=GND or IN		0.01	0.1	uA

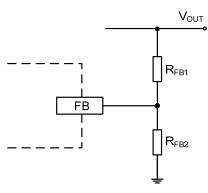
• Typical Block Diagram

• Pin Description FS1407 - ①23④


DESIGNATOR	SYMBOL	DESCRIPTION
12	Output Detection Voltage	AD=ADJ
34	Package Type:	SL: SOT23-6L

NO:	Pin Name	Pin Description			
1	EN	Enable Control Input. Drive EN to IN or to a logic high for normal operation, drive to GND or a			
		logic low to disable the regulator.			
2	GND	Ground.			
3	LX	Switching Node Output. Connect this pin to the switching end of the inductor.			
(4)	IN	Power Input. Bypass to GND as close as possible to the IC with a high quality ceramic capacitor.			
5	NC	No Connect			
	FB	Feedback Node. For fixed output voltage options, connects this pin directly to the output. For the			
6		Adjustable output version the voltage at this pin is regulated to 0.6V; connect to this pin to the			
		center of the output voltage feedback network.			

Application Information


Application note:

1. Inductor Value (Table 1)

Table 1. Typical Inductor Values

V_{out}	0.6V to 0.9V	0.9V to 1.8V	>1.8V
L	1.5uH	2.2uH	2.7uH

- $2 \ \ C_{in} \mbox{=} \mbox{4.7uF} (\mbox{ceramic capacitor}). \label{eq:constraint}$
- 3, C_{out} =10uF(ceramic capacitor).
- 4. Output Voltage Programming

Figure 1. Output Voltage Programming

Figure 1 shows the Feedback network necessary to set the output voltage when the adjustable version is used. Select the proper ratio of the two feedback resistors $R_{_{FB1}}$ and $R_{_{FB2}}$ based on the desired output voltage. Typically choose $R_{_{FB1}} \approx 100 K \Omega$ and determine $R_{_{FB1}}$ from the output voltage:

$$R_{FB1} = R_{FB2} (\frac{V_{OUT}}{0.6V} - 1)$$

Connect a small capacitor across $R_{\mbox{\tiny FB1}}$ for feed forward capacitance at the FB pin:

$$C_{ff} = 2 \times 10^{-5} / R_{FB1}$$

where R_{FB1} =900K Ω use 22pF. When using very low ESR output capacitors, such as ceramic, check for stability while examining load-transient response, and increase the compensation capacitor C₁ if needed.

4/7

FS1407

5、Dropout Operation

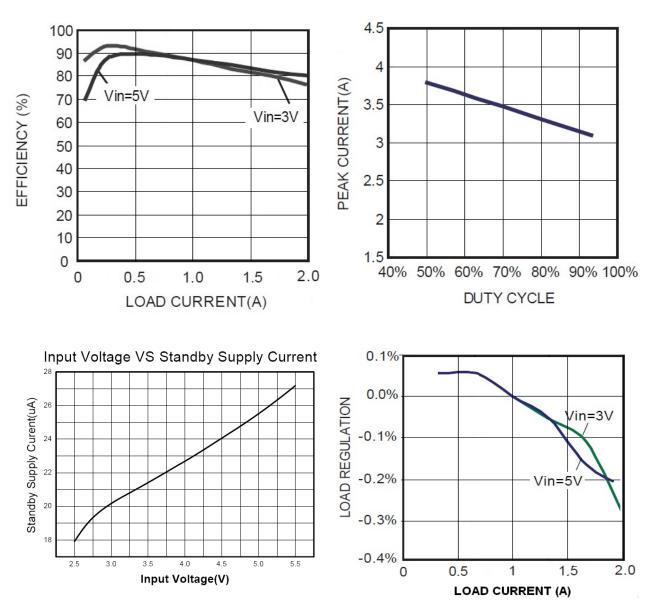
As the input supply voltage decreases to a value approaching the output voltage, the duty cycle increases toward the maximum on-time. Further reduction of the supply voltage forces the main switch to remain on for move than one cycle until it reaches 100% duty cycle. Possible occurred larger ripple on the low-dropout operation. Recommended operating voltage $V_{IN} \ge V_{OUT} + 0.7V$

PCB layout caution

1. The power traces, consisting of the GND trace, the SW trace and the Vin trace should be keep short, direct and wide.

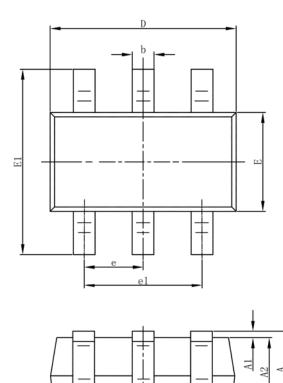
 $2 V_{fb}$ should be connected directly to the feedback resistors, The resistive divider R1/R2 must connected between the (+) plate of C_{out} and ground.

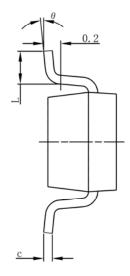
3. The (+) plate of Cin should be connected to Vin as closely as possible, because this capacitor provides the AC current to the internal power MOSFETS.


- $4\,{}_{\scriptscriptstyle \rm N}$ Keep the switching node SW away form the sensitive V_{fb} node
- 5. Keep the (-) plates of C_{in} and C_{out} as close as possible
- 6、The high current paths
- 7、The recommended PCB layout

5/7

• Typical Performance Characteristics For FS1407





• Package Information

SOT-23-6L PACKAGE OUTLINE DIMENSIONS

Symbol	Dimensions Ir	n Millimeters	Dimensions In Inches	
Symbol	Min	Max	Min	Max
А	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
с	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950(BSC)	0.037	(BSC)
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°