Simple Switcher 5A Step-Down Regulator

- Features
- adjustable output versions
- Adjustable version output range, 0.8 V to 32 V
$\bullet \pm 4 \%$ max over line and load conditions
- Available in TO263-5L package
- Guaranteed 5A output current
- Fixed 300 KHz Switching Frequency
- Wide input voltage range to 32 V

- Applications

- simple high-efficiency step-down regulator
- Efficient pre-regulator for linear regulators
- On-card switching regulators
- Positive to negative converter (Buck-boost)

- General Description

The FS1077 series of regulators are monolithic integrated circuits that provide all the active functions for a step-down (buck) switching regulator, capable of driving 5A load with excellent line and load regulation. These devices are available in an adjustable output version
The FS1077 series requiring a minimum number of external components, these regulators are simple to use and include internal frequency compensation and a fixed-frequency oscillator.
The PWM control circuit is able to adjust the duty ratio linearly from 0 to 100%. An enable function, an over current protection function is built inside. When short protection function happens, the operation frequency will be reduced from 300 KHz to 60 KHz . An internal compensation block is built in to minimize external component count.

- Pin Configurations

TO263-5L

- Pin Configuration

FS1077 (Top View)
TO263-5L

Pin Num	Pin Name	Description
1	GND	Ground Pin. Care must be taken in layout. This pin should be placed outside of the Schottky Diode to output capacitor ground path to prevent switching current spikes from inducing voltage noise into FS1077.
2	FB	Feedback Pin (FB). Through an external resistor divider network, FB senses the output voltage and regulates it. The feedback threshold voltage is 0.8 V.
3	SW	Power Switch Output Pin (SW). SW is the switch node that supplies power to the output.
4	EN	Enable Pin. Drive EN pin high to turn on the device, drive it low to turn it off.
5	VIN	Supply Voltage Input Pin. FS1077 operates from a 5V to 32V DC voltage. Bypass Vin to GND with a suitably large capacitor to eliminate noise on the input.

- Typical Application

Circuit Figure 1

- Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Input Voltage	Vin	-0.3 to 35	V
Feedback Pin Voltage	VFB	-0.3 to Vin	V
EN Pin Voltage	VEN	-0.3 to Vin	V
Output Switch Pin Voltage	VOutput	-0.3 to Vin	V
Power Dissipation	PD	Internally limited	mW
Thermal Resistance (TO263) (Junction to Ambient, No Heatsink, Free Air)	RJA	30	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Operating Junction Temperature	TJ	-40 to 125	${ }^{\circ} \mathrm{C}$
Storage Temperature	TSTG	-65 to 150	${ }^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	TLEAD	260	${ }^{\circ} \mathrm{C}$
ESD (HBM)		2000	V

- Electrical Characteristics (DC Parameters)

Vin $=12 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, Vin \& GND parallel connect a $220 \mathrm{uf} / 50 \mathrm{~V}$ capacitor; lout $=500 \mathrm{~mA}, \mathrm{Ta}=25^{\circ} \mathrm{C}$; the others floating unless otherwise specified.

Symbol	Parameter	Test Condition	Min.	Typ.	Max.	Unit
System parameters test circuit figure4						
VFB	Feedback Voltage	Vin $=5 \mathrm{~V}$ to 32V, Vout=5V Iload=0.5A to 5A	0.776	0.8	0.824	V
Efficiency	η	Vin=12V ,Vout=5V lout=5A	-	90	-	$\%$

Parameters	Symbol	Test Condition	Min.	Typ.	Max.	Unit
Input operation voltage	Vin		5		32	V
Shutdown Supply Current	ISTBY	VEN=0V		60	200	uA
Quiescent Supply Current	Iq	VEN =2V, VFB =Vin		3	5	mA
Oscillator Frequency	Fosc		240	300	360	Khz
Switch Current Limit	IL	VFB =0		8		A
EN Pin Threshold	VEN	High (Regulator ON) Low (Regulator OFF)		1.40 .8		V
	Input Leakage	IH	VEN =2V (ON)		1	15
Max. Duty Cycle	IL	VEN =OV (OFF)		1	15	uA

- Test Circuit and Layout guidelines

Figure. Standard Test Circuits and Layout Guides
Select R1 to be approximately 2 K , use a 1% resistor for best stability.
C1 and CFF are optional; in order to increase stability and reduce the input power line noise, CIN and C1 must be placed near to VIN and GND; For output voltages greater than approximately 10 V , an additional capacitor CFF is required. The compensation capacitor is typically between 100 pf and 33 nf , and is wired in parallel with the output voltage setting resistor, R2. It provides additional stability for high output voltage, low input-output voltages, and/or very low ESR output capacitors, such as solid tantalum capacitors.

CFF=1/(31*1000*R2); This capacitor type can be ceramic, plastic, silver mica, etc. (Because of the unstable characteristics of ceramic capacitors made with Z5U material, they are not recommended.)

Schottky Diode Selection Table

FORTH SEMI

- Typica Application

For 24V ~ 12VI4A Version

Figure. FS1077 System Parameters Test Circuit (24V ~ 12V/4A)

For 24V ~ 5V/5A

Figure. FS1077 System Parameters Test Circuit (24V ~ 5V/5A)

FORTH SEMI

TO263-5L

Symbol	Dimensions In Millimeters		Dimensions In Inches						
	Min.	Max.	Min.	Max.					
A	4.470	4.670	0.176	0.184					
A1	0.000	0.150	0.000	0.006					
B	1.560	1.760	0.061	0.069					
b	0.710	0.910	0.028	0.036					
c	0.310	0.530	0.012	0.021					
c1	1.170	1.370	0.046	0.054					
D	9.880	10.180	0.389	0.401					
E	8.200	8.600	0.323	0.339					
e	1.700 TYP.		0.067 TYP.						
e1	6.700	6.900	0.264	0.272					
L	15.140	15.540	0.596	0.612					
L1	5.080	5.480	0.200	0.216					
L2	2.340	2.740	0.092	0.108					
©	0°	8°	0°	8°					
V	5.600						REF.	0.220 REF.	

