Simple Switcher 3A Step-Down Regulator

- Features
-3.3V, $5 \mathrm{~V}, 12 \mathrm{~V}$ and adjustable output versions
- Adjustable version output range, 1.23 V to 37 V
$\bullet \pm 4 \%$ max over line and load conditions
- Available in TO220-5L and TO263-5L package
- Guaranteed 3A output current
- Wide input voltage range 6 V to 40 V

- Applications

- simple high-efficiency step-down regulator
- Efficient pre-regulator for linear regulators
- On-card switching regulators
- Positive to negative converter (Buck-boost)

- General Description

The FS1076 series of regulators are monolithic integrated circuits that provide all the active functions for a step-down (buck) switching regulator, capable of driving 3A load with excellent line and load regulation. These devices are available in fixed output voltages of $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}$, and an adjustable output version
The FS1076 series requiring a minimum number of external components, these regulators are simple to use and include internal frequency compensation and a fixed-frequency oscillator.

The FS1076 series offers a high-efficiency replacement for Popular three-terminal linear regulators. It substantially reduces the size of the heat sink, and in some cases no heat sink is required. FS1076 series guaranteed $\pm 4 \%$ tolerance on output voltage within specified input voltages and output load conditions. Also, the oscillator frequency accuracy is within $\pm 10 \%$. External shutdown is included, featuring $70 \mu \mathrm{~A}$ (typical) standby current. The output switch includes cycle-by-cycle current limiting, as well as thermal shutdown for full protection under fault conditions.

- Pin Configurations

- Pin Configuration

Pin name	TO220-5L	TO263-5L
(1)	Vin	Vin
(2)	Output	Output
(3)	GND	GND
(4)	Feedback	Feedback
(5)	$\overline{\text { ON /OFF }}$	$\overline{\text { ON } / \text { OFF }}$

- Typical Application

Fixed Output voltage Versions

Adjustable Output Voltage Version

Circuit Figure 1

Application Note:

A) Input Capacitor (CIN)

A 100 uF aluminum electrolytic capacitor located near the input and ground pins provides sufficient bypassing

B). Catch Diode selection(D1)

For this example, a 3A current rating is adequate. Use a 20 V IN5823 or SS34 Schottky diode for input voltage less than 20 V , otherwise high rated voltage needed
C). Output Capacitor Selection($\mathrm{C}_{\text {оut }}$)

Cout $=680$ uF to 2000 uF standard aluminum electrolytic.
D). Inductor Selection (L1)

Inductor value required 100 uH ,

E). Adjustable Output Voltage Versions

Programming Output Voltage (Selecting R1 and R2, as shown in Figure 1)
$V_{\text {OUT }}=V_{R E F}\left(1+\frac{R_{2}}{R_{1}}\right)$ where $V_{R E F}=1.23 \mathrm{~V}$

R1 can be between 1k and 5k.(For best temperature coefficient and stability with time, use 1\% metal film resistors)

$$
R_{2}=R_{1}\left(\frac{V_{\text {OUT }}}{V_{\text {REF }}}-1\right)
$$

- Absolute Maximum Ratings

Parameter	Symbol	Ratings	Units
Maximum Supply Voltage	$\mathrm{V}_{\text {IN }}$	45	V
$\overline{O N / O F F}$ Pin input voltage	Von/off	$-0.3 \leqslant v \leqslant+V_{\text {IN }}$	V
Minimum ESD Rating(C=100pF,R=1.5K Ω)	VESD	2	KV
Storage Temperature Range	Tstg	$-65 \leqslant$ Tstg $\leqslant+150$	${ }^{\circ} \mathrm{C}$
Maximum Junction Temperature	Тנт	150	${ }^{\circ} \mathrm{C}$
Lead Temperature (Soldering) 10 seconds	Tsolder	260	${ }^{\circ} \mathrm{C}$

- Electrical Characteristics

$\mathrm{TJ}=25^{\circ} \mathrm{C}, \mathrm{VIN}=12 \mathrm{~V}$ for the $3.3 \mathrm{~V}, 5 \mathrm{~V}$, and Adjustable version, $\mathrm{VIN}=25 \mathrm{~V}$ for the 12 V version. $\mathrm{ILOAD}=500 \mathrm{~mA}$,

Symbol	Parameter	Device	Test Conditions		Min	Typ	Max	Unit
Vin	Operation votage						40	V
Vout	Output Voltage (Note1)	FS1076(3.3V)	$\mathrm{VIN}=12 \mathrm{~V}, \mathrm{ILOAD}=0.5 \mathrm{~A}$	circuit Figure 1	3.324	3.3	3.366	V
		FS1076(5.0V)			4.900	5.0	5.100	
		FS1076(12V)	VIN=25V,ILOAD=0.5A		11.76	12.0	12.24	
Vout	Output Voltage (Note1)	FS1076(3.3V)	$6 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{IN}} \leqslant 40 \mathrm{~V}$	$\begin{aligned} & 0.5 A \leqslant \\ & \text { \|LOAD } \leqslant 3 \mathrm{~A} \\ & \text { circuit } \end{aligned}$ Figure 1	3.168	3.3	3.432	V
		FS1076(5.0V)	$8 \mathrm{~V} \leqslant \mathrm{~V}_{\mathbf{I N}} \leqslant 40 \mathrm{~V}$		4.800	5.0	5.225	
		FS1076(12V)	$15 \mathrm{~V} \leqslant \mathrm{~V}_{1 \times} \leqslant 40 \mathrm{~V}$		11.52	12.0	12.54	
Vout	Feedback Voltage (Note1)	FS1076(ADJ)	$8 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{IN}} \leqslant 40 \mathrm{~V}$ Vout=5V		1.193	1.230	1.273	V
η	Efficiency	FS1076(3.3V)	VIN=12V, ILOAD $=3 \mathrm{~A}$		--	75	--	\%
		FS1076(5.0V)			--	77	--	
		FS1076(12V)	VIN=15V,ILOAD=3A		--	88	--	
		FS1076(ADJ)	VIN=12V, lload =3A, Vout=5V		--	77	--	
lb	Feedback Bias current		Vout=5.0,(Adjustable version only)		--	50	100	nA
fo	Oscillator Frequency		(Note2)		47	50	58	KHz
Vsat	Saturation Voltage		lout=3A (Note3)		--	1.4	1.8	V
DC	Max Duty Cycle		(Note4)		93	98	--	\%
IcL	Current Limit		(Notes 2,3)		4.2	5.8	6.9	A
IL	Output Leakage Current		(Notes 5,6):Output=0V		--	--	2	mA
IQ	Quiescent Current		(Note 5)		--	5	--	mA
IstBy	Standby Quiescent Current		$\overline{\text { ON/OFF Pin=5V(OFF) }}$		--	50	200	uA
VIH	$\overline{\mathrm{ON}} /$ OFF Pin Logic Input Level		Vout=0V		--	2.0	2.2	V
VIL			Vout=Nominal Output Voltage		--	1.2		V
Іін	$\overline{\text { ON/OFF Pin Logic Input Current }}$		$\overline{\text { ON/OFF Pin=5V(OFF) }}$		--	12	30	uA
IIL	$\overline{\text { ON/OFF Pin Logic Input Current }}$				--	0	10	uA

Note 1: External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system. performance.
Note 2: The oscillator frequency reduces to approximately 11 KHz in the event of fault conditions, such as output short or overload. And the regulated output voltage will drop approximately 40% from the nominal output voltage. This self-protection feature lowers the average power dissipation by lowering the minimum duty cycle from 5% down to approximately 2%.
Note 3: Output pin sourcing current. No diode, inductor or capacitor connected to output.
Note 4: Feedback pin removed from output and connected to OV.
Note 5: Feedback pin removed from output and connected to +12 V for the Adjustable, 3.3 V , and 5 V versions, and +25 V for the 12 V and 15 V versions, to force the output transistor OFF.

Note 6: VIN $=40 \mathrm{~V}$

Typical Performance Characteristics

Normalized Output Voltage

Current Limit

Oscillator Frequency

Line Regulation

Quiescent Current
vs Duty Cycle

Quiescent Current

Switch Saturation
Voltage

Dropout Voltage

Feedback Voltage
vs Duty Cycle

Standby
Quiescent Current

Feedback Pin Current

Switching Waveforms

$5 \mu \mathrm{~s} / \mathrm{div}$

Load Transient Response

FORTH SEMI

TO220-5L

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
A	4.470	4.670	0.176	0.184
A1	2.520	2.820	0.099	0.111
A2	1.170	1.370	0.046	0.054
A3	4.250	4.550	0.167	0.179
A4	8.250	8.550	0.325	0.337
b	0.710	0.910	0.028	0.036
c	0.310	0.530	0.012	0.021
c1	1.170	1.370	0.046	0.054
D	10.010	10.310	0.394	0.406
E	8.900	9.300	0.350	0.366
E1	12.460	12.860	0.491	0.506
e		1.700 TYP		
e2	6.700	6.900	0.264	0.272
F	3.300	3.500	0.130	0.138
L1	2.590	2.890	0.102	0.114
L2	25.100	25.500	0.988	1.004
L3	24.300	24.700	0.957	0.972
L4	3.400	3.600	0.134	0.142
L5	3.800	4.000	0.150	0.157
R	5.300	5.500	0.209	0.217
Q	0.950	1.050	0.037	0.041
2.790	3.890	0.149	0.153	

TO263-5L

FORTH SEMI

CONTROLLING DIMENSION: INCH

5-Lead TO-263

